Word sense disambiguation by selecting the best semantic type based on Journal Descriptor Indexing: Preliminary experiment
نویسندگان
چکیده
An experiment was performed at the National Library of Medicine((R)) (NLM((R))) in word sense disambiguation (WSD) using the Journal Descriptor Indexing (JDI) methodology. The motivation is the need to solve the ambiguity problem confronting NLM's MetaMap system, which maps free text to terms corresponding to concepts in NLM's Unified Medical Language System((R)) (UMLS((R))) Metathesaurus((R)). If the text maps to more than one Metathesaurus concept at the same high confidence score, MetaMap has no way of knowing which concept is the correct mapping. We describe the JDI methodology, which is ultimately based on statistical associations between words in a training set of MEDLINE((R)) citations and a small set of journal descriptors (assigned by humans to journals per se) assumed to be inherited by the citations. JDI is the basis for selecting the best meaning that is correlated to UMLS semantic types (STs) assigned to ambiguous concepts in the Metathesaurus. For example, the ambiguity transport has two meanings: "Biological Transport" assigned the ST Cell Function and "Patient transport" assigned the ST Health Care Activity. A JDI-based methodology can analyze text containing transport and determine which ST receives a higher score for that text, which then returns the associated meaning, presumed to apply to the ambiguity itself. We then present an experiment in which a baseline disambiguation method was compared to four versions of JDI in disambiguating 45 ambiguous strings from NLM's WSD Test Collection. Overall average precision for the highest-scoring JDI version was 0.7873 compared to 0.2492 for the baseline method, and average precision for individual ambiguities was greater than 0.90 for 23 of them (51%), greater than 0.85 for 24 (53%), and greater than 0.65 for 35 (79%). On the basis of these results, we hope to improve performance of JDI and test its use in applications.
منابع مشابه
Journal Descriptor Indexing Tool for Categorizing Text According to Discipline or Semantic Type
A JDI (Journal Descriptor Indexing) tool has been developed at NLM that automatically categorizes biomedical text as input, returning a ranked list, with scores between 0-1, of either JDs (Journal Descriptors, corresponding to biomedical disciplines) or STs (UMLS Semantic Types). Possible applications include WSD (Word Sense Disambiguation) and retrieval according to discipline. The Lexical Sys...
متن کاملDistributional Semantics Approach to Thai Word Sense Disambiguation
Word sense disambiguation is one of the most important open problems in natural language processing applications such as information retrieval and machine translation. Many approach strategies can be employed to resolve word ambiguity with a reasonable degree of accuracy. These strategies are: knowledgebased, corpus-based, and hybrid-based. This paper pays attention to the corpus-based strategy...
متن کاملImproving Japanese Zero Pronoun Resolution by Global Word Sense Disambiguation
This paper proposes unsupervised word sense disambiguation based on automatically constructed case frames and its incorporation into our zero pronoun resolution system. The word sense disambiguation is applied to verbs and nouns. We consider that case frames define verb senses and semantic features in a thesaurus define noun senses, respectively, and perform sense disambiguation by selecting th...
متن کاملWord Sense Disambiguation Using Random Indexing
This paper presents the results of an experiment to apply a novel semantic representational formalism called Random Indexing for the supervised word sense disambiguation of English words. Random Indexing uses high-dimensional sparse vectors with random patterns modeling neural activation patterns in the brain to represent linguistic information. The presented learning and disambiguating method ...
متن کاملCombining Methods for Word Sense Disambiguation of WordNet Glosses
This paper presents a new approach for combining different semantic disambiguation methods that are part of a Word Sense Disambiguation(WSD) system. The way these methods are combined greatly influences the overall system performance. The approach is based on generating training examples, for each sense of the word, based on the output of each disambiguation method. A set of rules is learned fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society for Information Science and Technology : JASIST
دوره 57 1 شماره
صفحات -
تاریخ انتشار 2006